IMPROVED LATERAL LOAD DISTRIBUTION FOR SLAB AND T-BEAM REINFORCED CONCRETE BRIDGES

Faezeh Ravazdezh Dr. Julio Ramirez Dr. Ghadir Haikal

Lyles School of Civil Engineering

February 17th, 2021

1

Faezeh Ravazdezh (Faeez) fravazde@purdue.edu

B.Sc. University of Science & Technology - Iran (2013)

M.Sc. University of Bologna - Italy (2016)

Ph.D. Candidate Purdue University - U.S.

Project Member in

SPR-4120 (BO: Jeremy Hunter 2017-2019) SPR-4444 (BO: Jennifer Hart 2019-2021)

Lyles School of Civil Engineering

Contents

Topics of the presentation

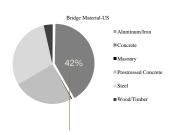
- Justification
- Hypothesis
- Research Objectives
- Methodology
- Results
- Summary

| 3

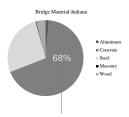
3

Justification

AASHTO-LRFD Specifies Simplified Analysis for Bridge Evaluation


- United States Bridge Population
- Load Rating Procedure

| 4


Justification

U.S. Bridge Population

- About 250,000 RC bridges
- Popular in 1950s-1970s
- 32,000 replaced RC bridges

- 3000 slabs and 700 T-beams
- 50% aged more than 50 years
- 21% structurally deficient
- · 26% reconstructed
- · 200 bridges posted/closed

Standard Load Evaluation Procedure

Lyles School of Civil Engineering

| 5

[Federal Highway Administration, 2019]

5

Justification

Load Rating Procedure

Standard routine for load-carrying assessment

- · Check for new code specifications
- · Check for current/future demand
- Check for permit vehicles

capacity vs. demand \longrightarrow Rating Factor (RF) \longrightarrow ≥ 1 < 1 < 0.3

safe
weight posting
closure

 $RF = \frac{R_n - DL}{LL \ (1 + IM)}$

Importance of Demand Estimate

[AASHTO LRFD, 2017]

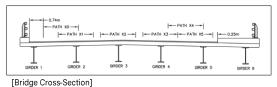
Hypothesis

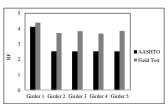
Current Demand Estimate Provisions Overestimate the Load Share of Interior Bridge Sections

- Background
- AASHTO LRFD Provisions

| 7

7

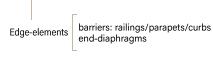

Hypothesis


Based on available literature AASHTO underestimates the RF

[Power Mill Bridge-Massachusetts] [Data Acquisition System]

Three-span girder bridge Measured strain values Applied standard truck

Compared with AASHTO results

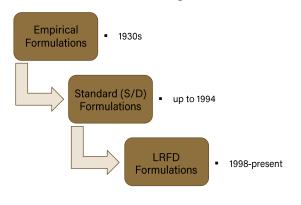


8 | [Sanayie et al., 2015]

Hypothesis

AASHTO Specifications

- · Simplified representation of superstructure
- · Member-by-member assessment
- · Two-dimensional analysis
- · Distribution factor for lateral load effect
- × Whole system behavior
- × Actual lateral load distribution
- ➤ Effect of non-structural components



[Cai and Shahawy 2003; Catbas et al. 2003; Hasancebi and Dumlupinar 2013]

9

Hypothesis

Distribution Factor Background

- Introduction of DF concept
- Based on experimental/field test data
- Related to bridge type
- Single-span non-skewed bridges
- Under/overestimating
- Included more geometrical properties
- Improved accuracy
- Increased range of applicability

Neglected Effect of Secondary Elements

Lyles School of Civil Engineering

10

Δ

Original Contribution

Revise Distribution Factor Formulation Considering Effect of Secondary Elements

Research Objectives

| 11

11

Original Contribution

Research Objectives


- · Improve accuracy of demand estimation for slab and T-beam bridges
- Revise current distribution factor formulations
- · Include effect of secondary components

$$RF = \frac{R_n - DL}{LL \ (1 + IM)}$$

$$DF = c + \left(\frac{S}{a_1}\right)^{b_1} \left(\frac{S}{a_1 L}\right)^{b_2} \left(\frac{R_0}{a_1 L_0}\right)^{b_3} \rightarrow girder$$

$$DF = \frac{1}{a + b\sqrt{LW}} \rightarrow slab$$

load share to strips/girders

Finite Element Methods Could Be Used for A Thorough Investigation of Lateral Load Distribution

- Exploratory Case Study: Indiana Bridge Sample
- Parametric Study
- Statistical Analysis

| 13

13

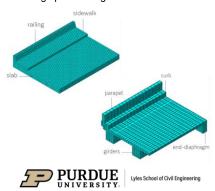
Methodology

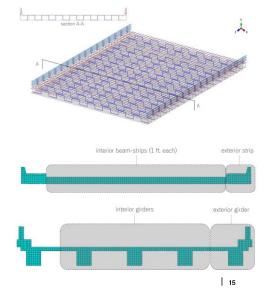
Indiana Bridge Case Study

• RF assessment for a sample of slab and T-beam bridges

- Construction Year
- Span length
- Roadway width
- Deck skew
- Application of Conventional Load Rating (CLR) procedure

 LRFD
- Performing Finite Element (FE) analysis ABAQUS
- · Comparison of CLR and FE results



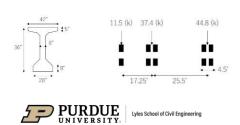

14

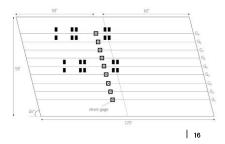
[National Bridge Inventory, 2013]

Modeling Assumptions

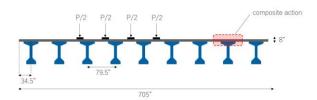
- · Linear elastic analysis
- · Material properties based on drawings
- 3D solid elements for concrete
- Truss elements for reinforcement
- Bridge partitioning

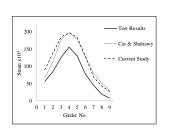
15


Methodology


Model Validation

- · Slab on concrete girder bridge
- Elastic Modulus: 4031 ksi
- Strain values measured
- Span length: 125 ft.
- Deck skew: 45°
- Prestressed AASHTO V Type beams
- Two FDOT trucks applied


[St. Lucie County Bridge - Florida]


[Cai et al., 2002]

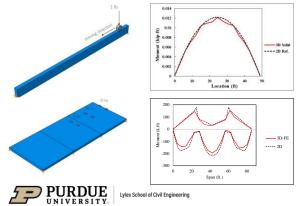
Model Validation

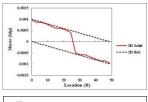
Strain values comparison

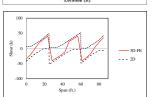
- Comparable magnitude
- Similar pattern for strain distribution
- Greater strain values for girders under applied loading
- Similar results to Cai study's

17

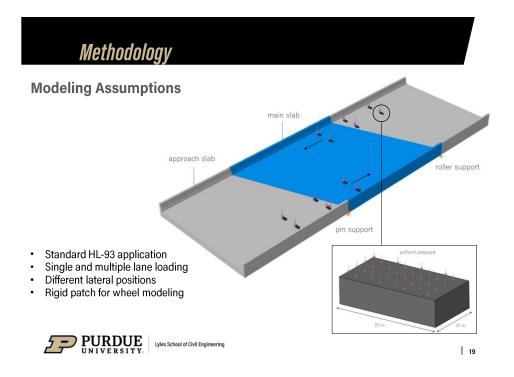
[Cai & Shahawy,, 2004]

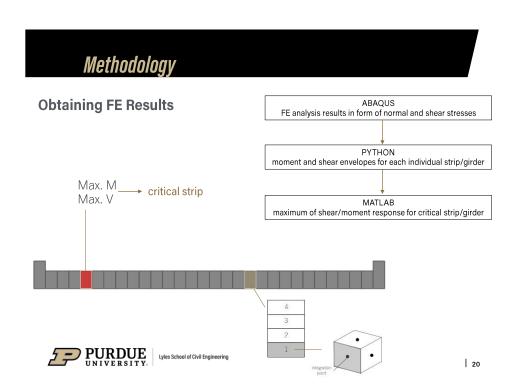

17

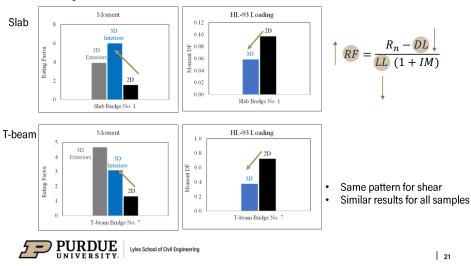

Methodology


Model Verification

Moving Load Application


- Apply 1 lb. moving load step-by-step Equilibrium satisfaction





18

Case Study Results

21

Methodology

Findings Summary

- · Bridge system behavior was reflected in superstructure 3D models
- · Rating factors of studied sample increased with 3D finite element analysis
- · CLR could overestimate bending moment and shear forces of bridge components
- Presence of non-structural elements has substantial effect on load distribution over bridge deck
- Edge-stiffening effect is neglected in current distribution factor provisions
- · Demand estimates could be improved with revised DF formulations

Performing Parametric Study to Include Effect of Edge Elements

22

Parametric Study

Statistical distribution of bridge features —

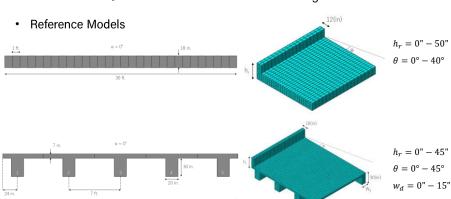
Counties in Indiana 1900-2016 Bridge dimensions

NBI dataset ______ Bridge dimensi

Bridge drawings

Material properties
Edge members dimensions

- ✓ Reference models
- ✓ Range of variables
- Comparison of FE and code-specified demand results Potential modifications

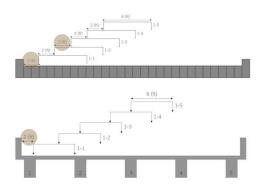

23

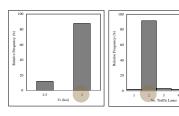
23

Methodology

Parametric Study

· Range of Variables




- Combined effect of variables
- · Single and multiple span bridges

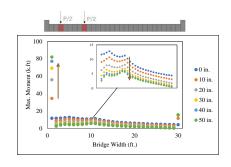
24

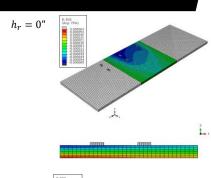
PURDUE UNIVERSITY. Lyles School of Civil Engineering

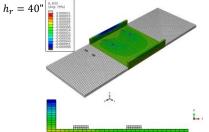
Modeling Assumptions

- Elastic modulus of 3438 (ksi)
- Solid 3x3x6 in. elements
- Single and multiple traffic lanes
- Moment and shear responses
- Interior and exterior sections

PURDUE Lyles School of Civil Engineering

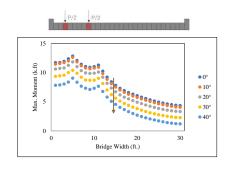

25

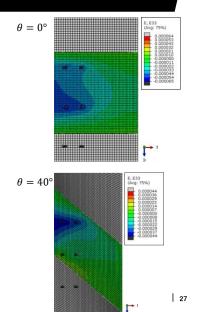

25


Methodology

Results

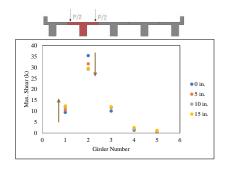
· Railing Effect

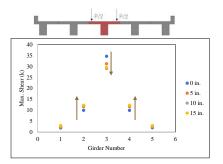




Results

• Skew Effect




27

Methodology

Results

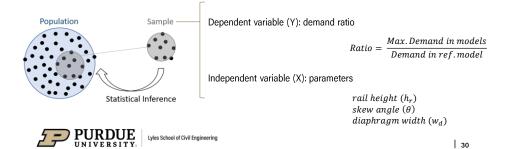
· End-diaphragm Effect

28

Findings Summary

- · Edge elements significantly influenced the demand distribution over bridge deck
- Railing produced the most drastic change in moment and shear demands
- · Revised live load distribution factors could incorporate effect of secondary elements
- · Modification factors could adjust current DFs for this purpose

Conducting Statistical Analysis to Propose Modification Factors

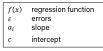

29

29

Methodology

Statistical Analysis

- · Applied statistical methods to collect, organize, and analyze sample set of data
- Utilized quantified models and representations to characterize given set of data
- Proposed conclusions appliable to whole data population


Regression Analysis

- · Determines numerical relationship between variables that are correlated
- Mathematical formulation that relates the dependent variable (Y) to independent variable (X)
- · Used Nlogit-4 data analysis software
- · Based on non-linear multivariate regression model

$$Y = f(X) + \varepsilon \longrightarrow f(X) = ?$$

etc.

31

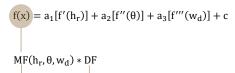
PURDUE Lyles School of Civil Engineering

31

Methodology

Statistics

- Student t-test statistical significance of independent variables
- Residuals sum of squares performance indicator of regression model



Regression Models

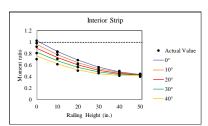
- · Determine dependency function between variables
- · Select statistically significant independent variables
- · Try different trendline formats for each variable set
- · Minimize the errors

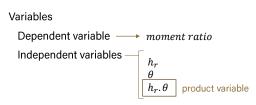
$$y_i = f(x_i) + \epsilon_i$$

· Maximize the goodness of fit

proposed modification factor current distribution factor

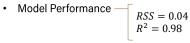
Lyles School of Civil Engineering


33


33

Methodology

Regression Model Estimation



· Regression coefficients

$$MF = 1 - 0.02h_r + 0.0002h_r^2 - 0.3tg\theta + 0.006h_r tg\theta$$

School of Civil Engineering

| 34

Results

Research Implementation

- Proposed Modifications
- Verification of Proposed Correction Factors

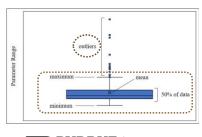
35

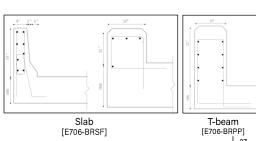
35

Results

Proposed Modification Factors

Bridge	Loading	Section	Effect	Railing MF	Diaphragm MF
Slab	Single-Lane	Interior Strip	Moment	$1 - h_r(0.02 + 0.006tg\theta) + 0.0002h_r^2$	
			Shear	$1 - 0.004h_r$	
		Exterior Strip	Moment	$1.2 + h_r(0.2 - 0.02tg\theta) - 0.002h_r^2$	
			Shear	$1.4 + h_r(0.07 - 0.03tg\theta)$	1
	Multiple-Lane	Interior Strip	Moment	$1 - h_r(0.01 + 0.008tg\theta)$	NA NA
			Shear	$1 - 0.003h_r$	
		Exterior Strip	Moment	$1.2 + h_r(0.2 - 0.04tg\theta) - 0.002h_r^2$	
		Exte	Shear	$1.6 + h_r(0.09 - 0.04tg\theta)$	
T-beam	Single-Lane	Interior Girder	Moment	$1 - 0.004h_r$	$1 - 0.004w_d$
			Shear	NA	$1 - w_d(0.03 - 0.006tg\theta) + 0.001w_d^2$
		Exterior Girder	Moment	$1 + 0.007h_r$	$1 - 0.002w_d$
		gi Exte	Shear	$1 + h_r(0.003 - 0.003tg\theta)$	NA
	Multiple-Lane	Interior Girder	Moment	$1 - 0.001h_r$	$1 - 0.003w_d$
			Shear	NA	$1-0.009w_dtg\theta$
		Exterior Girder	Moment	$1 + 0.008h_r$	NA
		Exte	Shear	$1 + h_r(0.004 - 0.004tg\theta)$	NA

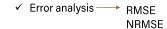

36

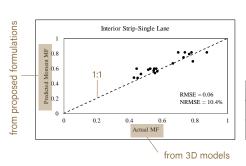

Results

Modification Factors Verification

- ✓ Ten each bridge type✓ Different geometries than reference bridge Select random bridges from NBI dataset
- ✓ Railing standard drawings Estimate effect of secondary elements on response of bridges -

PURDUE UNIVERSITY


Lyles School of Civil Engineering


37

Results

Modification Factors Verification

- Perform FE analysis on 3D models of selected bridges
- Investigate performance of proposed formulations -→ ✓ FE results vs. MF values

Samples	RMSE	NRMSE (avg.)
slab	0.06-0.48	10.57%
T-beam	0.03-0.11	7.11%

Summary

Research Findings

- Conclusions
- Future Work

39

39

Summary

Conclusions

- Bridge 3D models enabled inclusion of non-structural elements in FE analysis
- · Non-structural elements such as railings, curbs, and end-diaphragms changed lateral distribution of load
- The findings of this study will improve the accuracy of RF evaluation

Recommendations

- Modification factors were proposed to update current DFs in both bridge types
- This might prevent posting/closure of critical bridges conservatively identified as structurally deficient

Summary

Suggested Future Work

- · Perform parametric study to consider different edge geometries
- · Investigate potential rehabilitation technique of adding rails in critical bridges
- · Extend findings of the study to other similar bridge systems

41

41

